Formation of Molecular Clouds and Global Conditions for Star Formation

> Clare Dobbs, U. Exeter Mark Krumholz, UC Santa Cruz Javier Ballesteros-Paredes, UNAM Alberto Bolatto, U. Maryland Yasuo Fukui, Nagoya U. Mark Heyer, U. Massachusetts Mordecai Mac Low, AMNH Eve Ostriker, Princeton U. Enrique Vázquez-Semadeni, UNAM

The Four Questions

- What do observations tell us?
- How do molecular clouds form?
- What processes control molecular cloud structure, evolution, and dissolution?
- What regulates star formation in molecular clouds?

WHAT DO OBSERVATIONS TELL US?

Question 1:

In the beginning...

- 1930s: molecules in optical absorption
- 1960s: molecules in radio emission
- **1970:** H₂ (Carruthers 1970), CO (Wilson+ 1970)
- 1980s: all-Galaxy CO maps (Dame 1987), cloud catalogs (Solomon+ 1987, Scoville+ 1987), high density tracers: NH₃, HCN, CS (Myers 1983; Snell+ 1984)
- 1990s: extragalactic GMCs, interferometer maps, sub-mm dust

Top: Wilson et al., 1970, ApJL, 161, L43 ; Bottom: Dame et al., 1987, ApJ, 322, 706

Stars form in molecular clouds

Leroy et al., 2008, AJ, 136, 2782

Quantitative correlations

- SFR-HI correlation poor
- SFR-H₂ correlated, index ~1, $\tau_{dep}(H_2) = M_{H_2}/SFR \sim 2 \text{ Gyr}$
- Caveats: CO-H₂ and light-SFR conversion; correlation fails on small scales

MC masses

- Mass range ~ $10^2 10^7 M_{\odot}$
- Mass spectrum is a powerlaw dN / dM ~ M^Y, possibly with an upper cutoff
- γ ~ -2 to -1.5 in H₂-rich
 regions (inner MW and M33)
- γ ~ -2.5 to -2 in H₂-poor regions (outer MW and M33, LMC, SMC)
- NB: γ > -2 means most gas in big clouds

Top: Roman-Duval et al., 2010, ApJ, 723, 492 Bottom: Gratier et al., 2012, A&A, 542, A108

MC surface densities

- MC surface densities ~100 M_☉ pc⁻², no systematic variation with mass or Milky Way galactocentric radius
- Possible weak dependence on environment in other galaxies: lower in low Σ regions, higher in high Σ regions
- PDF of Σ within GMCs roughly lognormal w/powerlaw tail
- Caveat: sensitivity bias

Top: Roman-Duval et al., 2010, ApJ, 723, 492 Bottom: Rebolledo et al., 2012, ApJ, 757, 155

MC velocity dispersions

- Velocity dispersion obeys $\sigma_v = (\alpha_G \pi G \Sigma R/5)^{1/2}$ with $\alpha_G \approx 1$ (Heyer+ 2009)
- Could be virialization, pressure confinement, free-fall collapse
- Most power on large scales

Top: Heyer et al., 2009, ApJ, 699, 1092; Bottom left: Field et al., 2011, MNRAS, 416, 710; Bottom right: Ballesteros-Paredes et al., 2011, MNRAS, 43, 123

Complex internal structure!

Narayanan et al., 2008, ApJS, 177, 341

Dimensionless numbers!

- Virial theorem describes large-scale dynamics of GMCs; ratio of terms says what forces are important
- α_G = −2 T / W ≈ 1: gravity and large-scale motions comparable
- M / M_{crit} = M / [Φ/(4πG)^{1/2}] ≈ 2: magnetic fields not negligible, but not strong enough to offset gravity

GMC lifetimes

M51: lots of inter-arm clouds, lifetime ~100 Myr (Koda+ 2009) LMC: lifetime from number counts + cluster ages ~30 Myr (Kawamura+ 2009) Solar neighborhood: no post-T Tauri stars in nearby clouds, ~ 3 Myr (Hartmann+ 2001)

- For comparison, free-fall time $t_{\rm ff} = (3\pi/32G\rho)^{1/2} \approx 1 5 \,\rm Myr$
- Local vs. M51, LMC lifetime difference may be selection effect

Left: Koda et al., 2009, ApJ, 700, L13; middle: Kawamura et al., 2009, ApJS, 184, 1; Right: Hartmann et al., 2001, ApJ, 562, 852

Star formation: low efficiency

- SFR per free-fall time ε_{ff} = SFR / (M_{gas}/t_{ff}) ~ 0.01 (factor of ~3 spread) over broad range of densities, environments
- t_{life} < 100 t_{ff}, so GMCs disrupted at low overall SFE

Left: Krumholz et al., 2012, ApJ, 745, 69; Right: Garcia-Burillo et al., 2012, A&A, 539, A8

GMCs in extreme environments

Physical and star formation properties vary near galactic centers, in starburst galaxies, and at low metallicity

Top: Rosolowsky & Blitz, 2005, ApJ, 623, 826

Bottom left: Bigiel et al., 2008, AJ, 136, 2846

Bottom right: Bolatto et al., 2011, ApJ, 741, 12

Question 2:

HOW DO MOLECULAR CLOUDS FORM?

Local converging flows I

0.00 Myr

Vazquez-Semadeni+ 2011

Vazquez-Semadeni et al., 2011, MNRAS, 414, 2511

Boxsize 80.0 pc

Local converging flows II

- Local turbulence or feedback (e.g. SN blast wave) triggers collision of warm HI streams
- Density rise triggers transition to cold HI, then H₂ once column exceeds ~10²¹ cm⁻²; H₂ formation and star formation simultaneous
- Maximum mass ~ mean ISM surface density x $H^2 \sim 10^4 M_{\odot}$; can't produce the big GMCs that contain most of the mass

Cloud collisions in spiral arms I

Dobbs & Pringle 2013

Dobbs+ 2012

Left: Dobbs & Pringle, 2013, MNRAS, 432, 653; right: Dobbs et al., 2012, MNRAS, 425, 2157

y kpc

Cloud collisions in spiral arms II

- Collisions slow except in spiral arms, where rate is enhanced by orbit crowding
- Can build > $10^6 M_{\odot}$ clouds in such regions
- Explains why many GMCs are counterrotating relative to galaxy
- Produces right cloud mass spectrum
- Operation unclear in flocculent galaxies without big stellar spiral potential

Gravitational and magneto-Jeans instability I

0.000

Kim & Ostriker 2006

Gl and MJI II

- Non-axisymmetric instability occurs when Q = $\kappa c_{eff}/\pi G\Sigma <~ 1.5$
- GI makes ~10^{7–8} M_{\odot} clouds without spiral structure; smaller clouds from fragmentation
- MJI: works in arms w/low shear, B fields counter Coriolis; high Σ allows ~10^6 M_{\odot} clouds
- Naturally explains spurs, "beads on a string" HII regions, low GMC spins (magnetic braking)
- Full cloud mass spectrum not yet determined

Parker + thermal instability

- Buoyancy makes B field lines rise out of plane, gas collects in valleys
- For isothermal medium density enhancement only factor of a few
- TI allows runaway cooling (cf. colliding flows)
- Makes ~10⁵ M_☉ clouds
- May not work in turbulent or multiphase medium

Mouschovias et al., 2009, MNRAS, 397, 14

Forming H_2 and CO

- H₂ forms on dust grains, dissociated by FUV; dominates only in dense, shielded regions
- CO forms in gas, requires H₂, also FUV dissociated
- Layered structure: HI + CII with column $\Sigma \sim 10/Z M_{\odot} pc^{-2}$, then H₂ + CII, then H₂ + CO
- Dust abundance matters a lot
- Unclear whether / when nonequilibrium chemistry important

Do H₂, CO matter for SF?

- CO: no! CO-SF correlation fails at low Z, CO forms rapidly, not needed for cooling
- H₂:? H₂-SF still correlated at low Z, but probably because shielding matters for both H₂ and SF

Left: Krumholz et al., 2011, ApJ, 731, 25

Right: Glover & Clark, 2012, MNRAS, 421, 9

WHAT PROCESSES CONTROL GMC STRUCTURE, EVOLUTION, AND DISSOLUTION?

Question 3:

N_2H^+ 1–0 area

DR21: Schneider+ 2010; color = integrated intensity, contours = velocity

Morphological evidence

ullet

- Filaments with converging flows toward / along them
- Offset maxima of velocity, col. density
 - Origin unclear: HD turbulence w / no self-gravity and free-fall magnetized collapse both fit!
- Need statistical measures

All figures: Schneider et al., 2010, A&A, 520, A49

Non-thermal motions

- σ ~ 1 10 km s⁻¹ on L ~ 10 pc scales
- Viscosity υ ~ 10¹⁶ cm² s⁻¹, so Re ~ LV / υ ~ 10⁹: flow inevitably turbulent
- Turbulence decays, so why is σ so large?
- Possibilities:
 - Global gravitational collapse
 - External driving (e.g., accretion, collisions)
 - Internal energy injection from SF feedback

Global collapse

- Colliding flows of warm gas drive turbulence via NLTSI
- Gravity takes over, chaotic collapse follows
- Linewidths reflect collapse
- Easily explains linewidths
- Getting right $\epsilon_{\rm ff}$ depends on details of feedback

Top: Heitsch et al., 2008, ApJ, 674, 316 Bottom: Heitsch et al., 2009, ApJ, 704, 1735

External driving

- Accretion onto cloud as it forms drives turbulence
- For big clouds, large-scale shear flows and turbulent cascade from rest of galaxy
- Seems able to explain both linewidths and lifetimes
- Needs feedback to get right ε_{ff}

Internal driving

- Protostellar jets too weak on GMC scales
- Radiation pressure, main sequence winds: couple too weakly
- HII regions may work
- Gets ε_{ff} right
- Challenge: drive without disruption
- B fields may be important

Top: Gritschneder et al., 2009, ApJ, 694, L26; Bottom: Gendelev & Krumholz, 2012, ApJ, 745, 159

GMC disruption

- Except perhaps in M51, $\tau_{life} << \tau_{dep}$, so disruption mechanism required
- In global collapse, need disruption time <~ τ_{ff} ; can be 1 10 τ_{ff} for external or internal driving
- Same candidate mechanisms as for internal driving: HII regions, Sne
- FEW FIRST-PRINCIPLES SIMULATIONS, mostly simulations with subgrid feedback recipes, and (semi-)analytic models

WHAT REGULATES STAR FORMATION IN GMCS?

Question 4:

The problem in a nutshell

- For uninhibited collapse, $\epsilon_{\rm ff} \sim 1$, but observed value is $\epsilon_{\rm ff} << 1$
- In MW, ε_{ff} ~ 1 gives SFR ~ 100 M_☉ yr⁻¹; observed SFR ~1 M_☉ yr⁻¹
- Classical explanation is B fields, but observed field strengths too small
- Remaining contenders: collapse + rapid disruption by feedback, and turbulence

Collapse + disruption

- Can keep ε_{ff} low if clouds disrupted by feedback in <~ 1 t_{ff}, before much SF
- Disruption by ionization possible up to ~ 10⁵ M_☉ clouds, but depends on subgrid model
- Not clear if large clouds can be disrupted rapidly

Turbulence-regulated SF

- Turbulence
 supports against
 collapse on large scales, allows it on
 small scales
- Many models for $\varepsilon_{\rm ff}$ ($\alpha_{\rm G}$, \mathcal{M} , β); all give $\varepsilon_{\rm ff} \sim 0.01 - 0.1$ for GMCs

Federrath & Klessen, 2012, ApJ, 761, 156

 Turbulence must be maintained by external driving and/or feedback

Combination models

Reality likely between pure collapse and turbulence models: SF regulated by turbulence, but cloud properties evolve with time

Left: Zamora-Aviles et al., 2012, ApJ, 751, 77; right: Goldbaum et al., 2011, ApJ, 738, 101

Connection to galactic scale

- What sets Σ_{SFR} at galactic scales?
- $\Sigma \sim 10 100 \text{ M}_{\odot} \text{ pc}^{-2}$: $\Sigma_{SFR} \sim \Sigma_{g}^{N}$ with N ~ 1: probably just cloud-counting, all clouds are (on average) the same
- Σ > 100 M_☉ pc⁻²: N > 1, probably because GMCs are getting denser
- Σ < 10 M_☉ pc⁻²: N > 1, and third parameters (e.g. metallicity, mass of old stellar population) seem to matter

Three possibilities

- GI dies out at low Σ_g , so Σ_{SFR} declines non-linearly
- ISM at low Σ_g is HI-dominated, only H₂ phase forms stars; metallicity matters for this reason

Top: Li et al., 2006, ApJ, 639, 879; bottom: Krumholz et al., 2009, ApJ, 699, 850

Three possibilities ctd.

 Balance between feedback-driven turbulence and gravity is key, with vertical g_z dominated by stars at large radii

Kim, Ostriker, & Kim, 2013, ApJ, submitted

Things will be better in...

THE FUTURE

Observations

- ALMA and NOEMA: sensitivity to measure internal GMC structure in extragalactic sources
- IRAM 30m, NRO 45m, LMT 50m, NANTEN2, CCAT: large-area mapping
- CARMA, SMA: big surveys of GMCs in MW

T03F0.50	T10F0.25	T10F0.50	T10F0.90
Krum	holz & Th	nompsor	2012

Theory

- Combine galactic-scale codes w/small-scale ones
- Idea: get both environment and feedback right – needs physics beyond hydro + gravity

0.0 Gyr	Gas
1 pc	Hopkins+ 2011

Left: Krumholz & Thompson, 2012, ApJ, 760, 155 Right: Hopkins et al., 2011, MNRAS, 417, 950