High-J CO lines from low- to high-mass YSOs: the dynamics of protostellar envelopes

Irene San José-García¹, J. C. Mottram¹, E. F. van Dishoeck^{1,2}, L. E. Kristensen^{1,3}, U. A. Yildiz¹, and the WISH team

> ¹ Leiden Observatory, Leiden, The Netherlands. ² MPE, Garching, Germany. ³ Harvard-Smithsonian Center for Astrophysics, Cambridge, USA.

INTRODUCTION

In order to form a complete understanding of star formation, it is crucial to determine the similarities and differences between low- and high-mass young stellar objects (YSOs) from both a physical and chemical perspective.

The Herschel key program WISH [1] targets 51 protostars with luminosities ranging from 0.8 to $10^5 L_{\text{sun}}$ through observations of H₂O and CO.

Observed CO lines:

Sample of YSOs with HIFI:

- 26 low-mass (**LM**)
- 6 intermediate-mass (**IM**)
- 19 high-mass (**HM**)

Why CO?

- Probes different physical structures of the protostar.
- Easily excited and thermalized.
- High and stable abundance.

Is high-mass star formation a scaled-up version of low-mass star formation?

onclusions...

- ✓ Strong linear correlation between the high-J CO lines strengths and bolometric luminosity.
- ✓ Similar line profiles from low- to high-mass for all CO isotopologues with increasing width with $L_{\rm bol}$ and/or J level.
- ✓ Similar dynamics in protostellar envelopes independently of the mass of the YSO.

OBSERVATIONS

Line profiles

• ¹²CO line profiles decomposed into two Gaussians components:

• Narrow: quiescent envelope material.

• C¹⁸O line profiles show a

single narrow Gaussian component:

Quiescent envelope material.

 $C^{18}O$

¹²**CO**

Line luminosity

 Correlation between the line luminosity (L_{CO}) and bolometric luminosity (L_{bol}) for all the observed lines [2].

• High-J CO lines primarily trace the bulk of dense gas.

Line luminosity of the ¹²CO 10-9 (red), ¹³CO 10-9 (blue) **10**⁶ and C¹⁸O 10-9 (green) versus the bolometric luminosity for the WISH sample of protostars [2].

Envelope

2. The width of the $C^{18}O$ lines becomes larger at higher J transitions for the **LM** objects and remains relatively constant for HM YSOs [2].

1. Non-thermal motions (turbulence and/or infall) dominate in protostellar envelopes and determine the line-width of the C¹⁸O profiles.

DYNAMICS

What do we know?

Width of the C¹⁸O 9-8 line profile (top) and C¹⁸O 3-2 (bottom) versus the source bolometric luminosity [2].

3. Entrained outflowing gas (broad ¹²CO) related to the quiescent envelope material (narrow $C^{18}O$) independently of the mass of the YSO [2].

Can we explain these relations?

- Modelling $C^{18}O$ lines with the non-LTE radiative transfer code RATRAN[3] to constrain the contribution of infall and turbulence on the line profile.
- Goal: Understand the dynamics of protostellar envelopes and the outflowenvelope system across a large range of masses [4].

- 2. San José-García et al. 2013, A&A, 553, A125
- 3. Hogerheijde & van der Tak 2000, A&A, 362, 697
- 4. San José-García et al. in prep.

