High-J CO lines from low- to high-mass YSOs: the dynamics of protostellar envelopes Irene San José-García¹, J. C. Mottram¹, E. F. van Dishoeck^{1,2}, L. E. Kristensen^{1,3}, U. A. Yildiz¹, and the WISH team > ¹ Leiden Observatory, Leiden, The Netherlands. ² MPE, Garching, Germany. ³ Harvard-Smithsonian Center for Astrophysics, Cambridge, USA. #### INTRODUCTION In order to form a complete understanding of star formation, it is crucial to determine the similarities and differences between low- and high-mass young stellar objects (YSOs) from both a physical and chemical perspective. The Herschel key program WISH [1] targets 51 protostars with luminosities ranging from 0.8 to $10^5 L_{\text{sun}}$ through observations of H₂O and CO. #### **Observed CO lines:** #### Sample of YSOs with HIFI: - 26 low-mass (**LM**) - 6 intermediate-mass (**IM**) - 19 high-mass (**HM**) #### Why CO? - Probes different physical structures of the protostar. - Easily excited and thermalized. - High and stable abundance. Is high-mass star formation a scaled-up version of low-mass star formation? # onclusions... - ✓ Strong linear correlation between the high-J CO lines strengths and bolometric luminosity. - ✓ Similar line profiles from low- to high-mass for all CO isotopologues with increasing width with $L_{\rm bol}$ and/or J level. - ✓ Similar dynamics in protostellar envelopes independently of the mass of the YSO. #### **OBSERVATIONS** #### Line profiles • ¹²CO line profiles decomposed into two Gaussians components: • Narrow: quiescent envelope material. • C¹⁸O line profiles show a single narrow Gaussian component: Quiescent envelope material. $C^{18}O$ ¹²**CO** #### Line luminosity Correlation between the line luminosity (L_{CO}) and bolometric luminosity (L_{bol}) for all the observed lines [2]. • High-J CO lines primarily trace the bulk of dense gas. Line luminosity of the ¹²CO 10-9 (red), ¹³CO 10-9 (blue) **10**⁶ and C¹⁸O 10-9 (green) versus the bolometric luminosity for the WISH sample of protostars [2]. Envelope 2. The width of the $C^{18}O$ lines becomes larger at higher J transitions for the **LM** objects and remains relatively constant for HM YSOs [2]. 1. Non-thermal motions (turbulence and/or infall) dominate in protostellar envelopes and determine the line-width of the C¹⁸O profiles. **DYNAMICS** What do we know? Width of the C¹⁸O 9-8 line profile (top) and C¹⁸O 3-2 (bottom) versus the source bolometric luminosity [2]. 3. Entrained outflowing gas (broad ¹²CO) related to the quiescent envelope material (narrow $C^{18}O$) independently of the mass of the YSO [2]. ### Can we explain these relations? - Modelling $C^{18}O$ lines with the non-LTE radiative transfer code RATRAN[3] to constrain the contribution of infall and turbulence on the line profile. - Goal: Understand the dynamics of protostellar envelopes and the outflowenvelope system across a large range of masses [4]. - 2. San José-García et al. 2013, A&A, 553, A125 - 3. Hogerheijde & van der Tak 2000, A&A, 362, 697 - 4. San José-García et al. in prep.